
b? 

Virendra Nath Saxena 

Principal Investigator: Dr. William A. Rense 

UNIVERSITY OF COLORAM) 

Laboratory for Atmospheric and Space Physics 
Boulder, Colorado 80302 

SCIENTIFIC REFORT NO. 1 

NASA Grant No, NGR 06-003-034 

NATIOWL AERONAUI!ICS AND SPACE ADMINISTRATION 
WASHINGTON 85, D. C. 

GPO PRICE $ - v  - b 

Q CFSTI PRICE(S) $ :: - N 6 6  U C C E S S I O N  3 5 2 3 6  NUMBER) ITHRUI 
I 

2 
)r 

L 4 ; t (PAGES) 
lC6DE) 

ti 
3,ao Hard copy (HC) 

A CR OR TUX OR AD NUMBER) 

Microfiche (MF) J 

ff 653 July 65 

Y 



TABLE OF COHlzlilTs 

I. IIJTRODUCTICN. 0 . .  . . . 0 . .  . . . . . 0 . 
If, A BaiiW DESCRiFZiON OF TEE APEAUTUS . . . . 

The Vacuum Spectrograph . . . . . . . . 
The Schuebr  Source . . . . . . . , . . . 
The Source Control Cabinet . . . . 
The PaverSupply. . . . . . . . . . . . 
Densitmetes Photometer and Accessories . 
Thermopile Accessories . . , . . . . . . . 
The phosphor Sample Holder . . . . . . 
ThePhotaePeter, . . . . . . . . . . . . 

111. '11E ANALYSIS OF TIE DATA s s 

fv- C O ~ ~ I ~  - . . . . - e . . . \ . * 8 . * e  

BIBLXaRAPaY 1 - e e 

APPgHDIX. TEE THEORETICAL VALUES OF R . . . . 

1 
20 

20 

20 

23 
26 

26 
20 

96 

34 
38 
36 
59 

62 



! 

FIGURE 

LIST OF FIGURES 

PAGE 

18 

19 

20 

2 1  

22 

23 

Insulator,  %miconductor, Metal . . . . . 6 

Klasen's Model (Electron capture) . . . . . . 8 

Lambe's Mode1 (Hole capture) . . . e . . . 9 

Configuration Coordinate Diagram . . . . 11 
Radiation transfer in c rys t a l s  . . . . . . 14 

Relative Response Curves, l inear  . . . . . . 16 

R e l a t i v e  Response Curves, Semi-log . . e 17 

L a m b e r t ' s b w .  . . . . . . . . . . . e 18 

Vacuum Monochromator . . . . . . . . . 2 1  

Schueler Source , . . . . . . . . . . . * .  22 

G a s  Metering System. . . . . . . . . 24 

Source Control Cabinet I . . . . . . 25 
PauerSupply . . . . . . . . . . 27 
Thermopile Amplifier and Recorder . . e . . 29 
Samph & Thermopile in posit ion behind slit . 30 

Photometer Mechanical Arrangement . . . . 31 
opt ica l  v i s  Areal Density Curves . . . 33 
Photometer Response 8c Phosphor Emiss ion  
curves . . . . . . . . . . r . . . . . . . ,  40 

- I l l u s t r a t i o n  . . . . . .I . 42 w2eff'wleff 
R e l a t i v e  Response v's $ Graph a t  304 A . . 47 

R e l a t i v e  Response v's $ Graph a t  461 A . . 49 

Relative Response v's f3 Graph a t  584 A , , 5 1  

Relative Response v's $ Graph at 1048 A . . . 53 

R e l a t i v e  Response v's 8 Graph a t  5216 A . . . 55 



I 

I . 

LIST OF TABUS 

mLE PAGE 

1. Optical Density of Phosph~r . (. . . . . . . . . . . 32 
2. ze!.s$is= E&ss(_e~? ef C-Qn 0 %  e = E I 41 
3. values of Constants e ... . . e . e . . e . . e . . . 45 
4, SumaaryofDataat304A . . (. . . . . . . . l . . 46 

5. SunmaryofDataatMlA . e . . . . . - .  . . . 48 
6. SunmarpofDataat584A . . . . . . . . . 50 

7. Sumnary of Data at 1048 A . . . . . . . . . . . . 52 
8, Sum;~aryofDataat1216A , . , , . . . . . , . . . . .  54 

--- -4- -- 

L 



z 

. 
z 

ABSTRACT 3’ 
This report  discusses the r e su l t s  of the application of a method 

dewloped by Bruner(6) for  measuring the absolute quantum eff ic iency of 

a luminescent material, a quantity which i s  important from both theore ti- 

cal and practical viewpoints. 

tions i n  the W spectroscopy of upper air  and space physics. 

Tinis typs of research has several applica- 

b a d  i s  sham t o  be an activator fo r  the phosphorescence of cal- 
cium tungstate (although pure c rys ta l s  of t h i s  alkaline ear th  tungatate 

a l so  exhib i t  luminescence) . 
of Caw0 with 0.709. lead by weight was measured a t  room temperature a t  
f ive selected W wavelengths. 

blaclteued with evaporated col loidal  gold, and a specially constructed 

RCA 931 A photonultiplier type photometer were used t o  measure the in- 

t ens i ty  of the incident W radiat ion and the luminescent radiat ion coming 
out from the back of a th in  phosphor screen, respectively. 

t ion  of the phot-ter w a s  accomplished with the he lp  of the thermopile 

such that the f i n a l  r e s u l t s  were independent of the absolute sens i t i v i ty  

of either instrument. 

sca t te r ing  of l i gh t  within the sample have been made, 

and a one meter grazing incident vacuum monochromator with a 600 l i n e s h  

blazed grat ing provided spectral lines with enough energy fo r  dependable 

measurements with the thermopile between 304 A and 1216 A. 

I n  t h i s  work the absolute quantum eff ic iency 

4 
A Reeder thermopile made of gold and 

The cal ibra-  

Appropriate corrections for  the absorption and 

The Schueler lamp 

The absolute quantum efficiency of the phosphor was  found t o  be of 
the order of 4.95 a t  304 A, 3.53 a t  461 A, 3.02 a t  584 A, 1,49 a t  1048 A 

and 1-47 a t  1216 A, i.e., decreasing with incteasing wavelengths i n  the 

extreme u l t rav io le t .  There was a suggestion of the poss ib i l i ty  of the 

ef f ic iency  a t ta in ing  a constant value for  wavelengths greater  than 10oO A, 
The importance of the r e s u l t s  has been discussed i n  the l i gh t  of present 

knowledge of the luminescence phenomena as applied t o  the inorganic phosphors. 



m P T E R  I 

INTRODUCTION 

h e  term "luminescence" or cold l i gh t  w a s  f i r s t  used i n  1888 by 

Weidmann,(l) for a l l  those phenomena of l i g h t  which are not solely con- 

ditioned by the rise i n  temperature. The emission of l i g h t  from matter 

i=fl*wme SE a:: ex= in  ttiz Visfble er Gesr ~ltrm7iclet regim wx?er thz 

c i t i n g  agent i s  termed "fluorescence." 

charac te r i s t ic  of the emitting substance, and to sone extent,  of the 

exci t ing agent. When the emission of the v is ib le  l i gh t  persists a f t e r  

removal of the exci t ing agent, the process i s  termed "phosphorescence" 

or after-glov. 
-8 a persistence time of nearly 10 

state which can cascade down to the lmr energy s ta tes  v ia an all-d 

op t i ca l  t ranai t ion.  

The emission of radiat ion i s  

The dividing line between the two phenomena is set a t  

sec, the typical  age of an excited 

Both phencmmm are practically ident ica l  and may be explained 

more or less on the sane basis. 

t i ona l  term covering both, although photoluminescence (by v is ib le  l ight) ,  
thermoluminescence (by low heat) , triboluminescence (by f r ic t ion) ,  

cathodolumiuescence (by cathode rays), sonoluminescence (by soung), 

chemiluminescence (by chemical reactions),  and electroluminescence (by 
e l e c t r i c i t y ) ,  etc., can a l s o  be included. 

cence" i s  c lass i f ied  according t o  the exci t ing agent(s) and special  

pref ixes  are derived therefrom. 
partical size, age, water content, e t c ,  

observed i n  gases and l iquids,  most of the research e f f o r t  i n  t h i s  

f i e l d  of study is confined t o  sol ids  and especial ly  t o  c rys t a l s  commonly 
know as "phosphors. 

Luminescence is actual ly  the conten- 

In other words, "lrrmines- 

Fluorescence may be affected by purity, 
Although luminescence is a l so  

I1 

The phosphor research has many applications, both theoret ical  

and experimental i n  W spectroscopy of the upper atutosphexe and celes- 
t i a l  bodies (phosphors have been used a s  wavelengths converters), and 

i n  the deveropplent of cathode ray screens, fluorescent lamps, and scin- 
t i l l a t i o n  counters. What is most important t o  the W spectroscopists 

i s  the use of phosphors for the sensi t iz ing and ca l ibra t ion  of photo- 

graphic films and phototubes. 
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The investigation t o  be discussed i n  t h i s  report  involves the appli-  

cat ion of a method developed by Bruner(6) for  measuring the absolute quantum 

eff ic iency of a phosphor by exci ta t ion i n  the extreme W spectral  region. 

The quantum eff ic iency i s  defined as  the r a t i o  of the number of the v is ib le  

photons produced by the exci t ing W photons, t o  the number of u l t r a d o l e t  

photons i n  the exci t ing radiat ion which a re  absorbed. 

k%ez a > a h ~ s c e &  c r y s t i l  zhsorh_s some u l t r av io l e t  photons, i t s  
electrons are raised from the ground s t a t e  t o  several  upper excited s ta tes .  

There are many routes along which the excited electrons cascade d m  t o  the 

ground s ta te ;  giving up t h e i r  acquired energy. 

a l l y  give rise t o  a few v is ib le  photons while others involve only radiation- 

less t ransi t ions.  A f rac t iona l  value of the absolute quantum eff ic iency is  
indicat ive of the f ac t  t ha t  the so called radiat ionless  t rans i t ions  are, t o  

sone extent,  dominate. On the other hand, i t  i s  a l s o  possible that  the ab- 

solute quantum eff ic iency may turn out t o  be greater  than one. 
i s  the  case, i t  i s  possible tha t  a very high energy photon, while being ab- 

sorbed, may release a photoelectron which could, i n  turn, exci te  a second 

e lec t ron  i n  the course of donating i t s  k ine t ic  energy. 

? l e c t r o x  nay be avai lable  t o  jump t o  the ground s t a t e ,  and thus, two photons 

could be ejected. 

has enough energy t o  produce as many as sixteen 5000 A photons, 

quently, t o  observe a quantum efficiency greater than unity i s  not surprising, 

Some of the routes eventu- 

When t h i s  

I n  t h i s  way, tvo 

Incidentally, a single photon of say, wavelength 304 A 

Conse- 

Recent investigation of the upper atmosphere has revived considerable 

i n t e r e s t  i n  vacuum UV radiation, par t icular ly  with respect t o  the in tens i ty  

of solar W which induces various photochemical processes. 

and Inn(2) in  t h e i r  studies of exci ta t ion spectra, presented a graph of 

quantum eff ic iency (not the absolute value) a s  a function of the incid.nt 
wavelength of several  phosphors in the range 584 A - 3500 A, One of the 

mater ia ls  (sodium-salicylate) exhibited the remarkable property tha t  i t s  
quantum eff ic iency was constant over the en t i r e  wavelength range. 

many workers t o  use sodum-salicylate a s  a reference t o  which other phosphors 

were compared. 

In  1953, Watanabe 

This led 

The previous work of T h ~ r n a u ' ~ )  and Conklin involved the study of 

the emission spectra and quantum efficiency of several  phosphors r e l a t ive  t o  

sodium-salicylate. I n  1964, Samson(4) has shown tha t  the re la t ive  quantum 
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eff ic iency of sodium-salicylate remains constant between 400 A - 900 A. Re- 
cently, Seyas") showed tha t  of a l l  the thicknesses of the layer of sodium- 

n 

sal icylate ,  the one with a weight density of l.Omg/cm' has best response t o  

the 2537 A line of Hg. 
(6 1 Recent work of Bruner on the absolute quantum eff ic iency of sodium- 

I 
sa l icy la te  shows tha t  the efficiency does not remain constant; rather,  i t  

decreases with increasfrig i m ~ ~ l c r t t h  vz~yi . ; i  frnm SF= to 42% a t  room tempera- 

ture  between 304 A - 1216 A. 

an aging effect") was confirmed by Bruner, 

t ha t  c rys t a l s  of pure calcium-tungstate comprise a very e f f i c i e n t  phosphor 

having about e ight  times the efficiency of sodium-salicylate. 

(1933), S w i ~ d e l l s ( ~ )  had indicated tha t  Pb (lead) a c t s  a s  an ac t iva tor  for  

the phosphorescence of calcium and strontium tungstates. 

Also, the f ac t  t ha t  sodium-salicylate exhib i t s  
(6) It w a s  shown by Taylor ( 8 )  

Previously 

For the purpose of finding the absolute quantum eff ic iency of a few 

phosphors, with the absorption and scat ter ing of the W and v is ib le  photons 

by the c r y s t a l  and the substrate,  and the responsivi t ies  of the measuring 

instr-nts both taken in to  account, the present work was  begun with avail-  

able equipment. The f i r s t  choice of phosphors w a s  an organic phosphor 

leumogen, "(") known to have constant quantum yield.  The second w a s  qui- 11 
- .  

I nine Sulphate. (11) I n  both cases the response w a s  poor and escaped experi- 

menta1 detection. 

However ,  CaWO :Pb (common nomenclature fo r  host: act ivator)  gave 4 
measureable resu l t s .  This compound, purchased from General Elec t r ic  Com- 

pany of U.S.A. had 0.n of lead by weight. The exci ta t ion spectra of t h i s  

phosphor had been given by Conklin, A l s o ,  the compound is soluble i n  

iso-propyl alcohol and thus produced no d i f f i c u l t y  during deposition on 

the g l a s s  substrate. 

Before proceeding with the measurement, l e t  us  discuss some of the 

cur ren t  mechanisms thought t o  be very important i n  1uminescnece. 
haustive treatment i s  given i n  the l i t e r a tu re  (13'14'15) on the subject. 

Since m c h  of the l i t e r a t u r e  reporting research i n  t h i s  f i e ld  concerns 

matters closely related to  comanercial applications,  some of the e a r l i e r  
publications appear i n  commercial reports ,  (16817) Hot t eve r ,  the book of 

An ex- 
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kverenz  (13) contains a complete account of the luminescence of solids.  

The books of K i t t e l  (18) and Dekker can a l s o  be considered a s  f a i r l y  

good references. 

In  order t o  explain opt ica l  phenomena, mainly luminescence, i n  non- 

naetallic c rys ta l s ,  one has t o  have a f a i r  background of the band structure 

of the electronic  energy levels,  By the introduction of small t races  of 

impurity, tk i i  extra e~iergy le%el,a, wh5rh ~)re loaded t o  the already exis- 

t ing band structure of a crystal ,  are s ignif icant  i n  the understanding of 

the luminescence behavior. 

tors" and the c rys t a l  i t s e l f  is known a s  "host." An impurity which increases 

the absorption of some excit ing radiat ion i s  of ten cal led the "sensitizer." 

- 

Such pruposeful impurit ies are cal led "activa- 

L e t  us now review, b r i e f ly  of course, the band theory of so l ids  a s  

i t  is related t o  the luminescence process. The free electron model of 

metals (electron gas) gives us  a good deal  of insight  i n t o  several  of the 

physical properties of metals, ye t  t h i s  does not help us understand why 

I 

I some chemical elements c rys t a l l i ze  t o  form good conductors of e l e c t r i c i t y ,  

while others form insulators ,  s t i l l  others form semi-conductors with elec- 

t r i c a l  properties varying with temperature. 

We encounter some quite remarkable properties possessed by electrons 

i n  c r y s t a l s  when we extend the free electron model t o  take account of in te r -  

a c t i c n  of e lectrons with the periodic l a t t i c e  of the solid.  

the electrons respond t o  applied e l e c t r i c  or magnetic f i e l d s  a s  i f  they are 
endowed with an e f fec t ive  mass which may be larger or smaller than the free  

e lec t ron  mass, or  may even be negative. Further, there are  s i tua t ions  i n  

which it i s  convenient t o  a t t r i bu te  t o  the charge c a r r i e r s  i n  c rys t a l s  a 

(posit ive) charge +e; such ca r r i e r s  are  known as "holes," i n  contrast  t o  

e lec t rons  which behave with t h e i r  normal (negative) charge -e. The most 

s t r ik ing  experimental evidence leading t o  the introduction of the concept 

of posit ive current ca r r i e s  or holes i n  c rys t a l  i s  furnished by the Hall 

e f f e c t .  ('O) It has been established by means of cyclotron resonance ex- 

periment s ('l) with c i r cu la r ly  polarized radiat ion tha t  holes and electrons 

r o t a t e  i n  oFposite 

f o r  charges of opposite sign. 

W e  see tha t  

senses i n  a magnetic f i e ld ,  j u s t  a s  one would expect 
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Gragg re f lec t ion  of "electron waves" i s  an important and charac- 

t e r i s t i c  feature of wave propagation i n  periodic l a t t i c e .  

the most s ignif icant  consequence of t h i s  i s  the existence of an energy "gap" 

i n  the d is t r ibu t ion  i n  energy of the s t a t e s  of the conduction electrons; 

that  i s  t o  say there may a r i se  a substantial  region of energy i n  which so- 

lu t ions  of the uave equations do not ex i s t .  

For our discussion, 

Such energy gaps, or  "forbidden 
= ~ = r g y  5=r;d~;," s= c k y  zre cal&ss, are =f ULCI-i)L*b r ls . - i - ( - .o .  - m t * * r a  .-CY*- in &t=prnmzizg 

whether a solid i s  t o  be an "insultor" or a "conductor." It w i l l  be an 

insulator  i f  a l l  the energy leve ls  below a forbidden band are  f i l l e d  with 

electrons and a l l  levels  above the forbidden band are vacant and f a r  away, 

energy-wise, from the f i l l e d  band. 

which i s  incompletely f i l l e d  should have a metall ic character. (Figurre 

la, lb ,  lc). 

A sol id  containing an upper energy band 

It w i l l  be evident t ha t  the s i tua t ion  depicted above occurs idea l ly  

A t  only a t  absolute zero, when the c rys ta l  i s  i n  i t s  lowest energy s ta te .  

temperatures d i f f e ren t  from zero, some electrons from the upper f i l l e d  

bands may be excited i n t o  the next empty band (conduction band) and con- 

cuction beconres possible. If the forbidden energy gap i s  of the order of 

several  e lec t ron  volts,  however, the solid w i l l  remain an "insulator" fo r  

a l l  prac t ica l  purposes. 

is 7 ev, For a s m a l l  gap width, say about 1 ev, the number of thermally 
exci ted electrons may become appreciable and i n  t h i s  case one speaks of an 

i n t r i n s i c  semi-conductor. Examples are germanium and s i l icon.  The dis-  

t i nc t ion  between insulators  and in t r in s i c  semi-conductors is  only a quanti- 

tative one. 

An example i s  diamond for  which the forbidden gap 

I n  fact, a l l  i n t r in s i c  semi-conductors are  insu la tors  a t  T = 0. 

By virtue of the low representation of the impurity (producing local-  

ized "imperfections" and d iscree t  energy levels)  i n  a host c r y s t a l  the energy 

levels therefrom are not densely populated. 

r e l a t i v e l y  far  spaced and so there i s  not too much probabili ty fo r  pertur- 

ba t ion  which occurs due t o  the overlapping of t he i r  w a v e  functions. An 

exci ted electron-hole pair traveling through a c rys t a l  i s  cal led an "exci- 
ton." 

ducting),  an exciton is produced. The hole and the e lec t ron  migrate sepa- 

r a t e ly .  A vis ib le  photon, however, i s  then emitted sometime during the 

In  fac t ,  the energy levels are 

Idhen an incident photon impinges on a c rys t a l  (which i s  photocon- 
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process of recombination. I n  a non-photoconducting phosphor, absorption of 

an incident photon exc i tes  an electron energy level of one of the ac t iva tor  

sites and the re turn  of the electron t o  the ground s t a t e  results i n  the 

emission of a photon. I n  e i t h e r  case, the frequency of the emitted photon 

is I-r t h n  the excitiEg *-"tnn. 

S p i c a 1  of the photoconducting phosphor i s  the family of metal ac t i -  

vated zinc and cadmium sulphide compounds; such as,  ZnS:Cu, 2nS:Ag and CdS:Ag. 

Klasens (22) and h i s  associates(23) have proposed a "hole migration" theory 

of liminescence of sulphides activated with monovalent impurit ies such a s  

Ag+. The sequence of events is i l l u s t r a t ed  i n  Figure 2. 

On the ionic  picture of the center, the subst i tut ion of a monovalent + * posit ive ion (Ag ) fo r  a divalent one (Zn ) leaves the volrmre around the 

center  with a net negative charge. This has two ef fec ts :  F i r s t ,  the cross 

sect ion fo r  trappinG of a hole becomes large because of coulomb a t t rac t ion ,  

and second, the energy released i n  the capture of a hole may be large. The 

proposed cycle i s  a s  below: 

(1) 
elec t ron  hole, leading t o  photoconductivity. 

(2) 

(3) 
of energy a s  infrared or  vibrational quanta (Phonon). 

(4) 
the center.  

( 5 )  
as luminescent emission. 

the conduction band t o  the ground state of the center o r  may be by way of 

an intermediate excited s ta te .  After luminescence the cycle i s  complete 

and the process may be repeated. 

Light i s  absorbed i n  the fundamental absorption band producing a f ree  

The hole may migrate i n  the valence band toward the impurity center. 

The hole i s  captured by the impurity center giving off a small amount 

The e lec t ron  wanders through the l a t t i c e  u n t i l  it f i n a l l y  c m s  near 

The e lec t ron  i s  captured by the center, and gives off excess energy 

The electronic  t r ans i t i on  may be d i r ec t ly  fram 

One wry s t r ik ing  f ac t  i s  tha t  the decay of luminescence is much 

S F w  i n  s t e p  5 above, more rapid than the decay of photoconductivity. 

the decay times of both would be approximately al ike,  Lambe and Klick 

suggested a better model given i n  Figure 3. 

(24)  

I n  s t e p  (3) i n  t h i s  m o d e l  the hole i s  captured by the impurigy cen- 

ter and luminescent emission occurs, leaving the center now neutral  i n  
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Figure 2. 
(1) Excitation, (2) Hole Migration, (3) Hole'Capture 
(non-radiative) , ( 4 )  Electron Migration, (5) Electron 
capture resulting 'in luminescence. 
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charge; and i n  s tep  ( 5 )  the electron captures a small amount of energy which 

i s  given off as an infrared photon or a phonon. 

tha t  the luminescence r e su l t s  from capture and subsequent recombination of 

a conduction electron, whereas the l a t t e r  assumes tha t  it r e s u l t s  from the 

capture and recombination of a free h o k .  

The former model assumes 

In t h i s  model the luminescent a c t  occurs f i r s t  and should occur much 

The hole sees an a t t rac-  more rapidly than the decay of photoconductivity. 

t i ng  coulomb potent ia l  before capture by the act ivator ,  while the e lec t ron  

sees a repulsive potent ia l  from the ac t iva tor  before the hole i s  captured 

and a weak (neutra1)potential thereafter.  

photoconductivity experiments, that  holes are  trapped i n  the sulphides 

much more rapidly thanelectrons.  

ted by electrons.  

magnetic(25) i n  the ground s t a t e ,  consistent with the Ag assignment of 

valancy . 
extensively by fJilliams (26) and provide good example of the class of non- 

photoconducting phosphors. Thallium ions T 1  a re  believed t o  occupy the 

place of K ions. ThetbazUum introduces two b e l l  shaped absorption bands 

centered about 1960 and 2490 A. The host c r y s t a l  l a t t i c e  produces pe-rtur- 

bation of the ac t iva tor  energy levels. fJe s h a l l  f ind it convenient t o  in- 

troduce a potent ia l  energy graph ( l ike the Frank-Condon principle i n  mole- 

cu lar  spectroscopy) cal led the "configuration coordinate diagram." 

abscissa  represents any single dimensional quantity characterizing the 

multi-dimensional crystal .  

d i s t o r t i o n  of the l a t t i c e ,  

It i s  known from the independent 

The photocurrent i s  known t o  be domina- 

Neither silver nor copper i n  ZnS make the c r y s t a l  para- + 

The thallium activated a l k a l i  halide phosphors have been studied 

+ 
+ 

The 

In  a way, the abscissa depicts  the degree of 

A typ ica l  potent ia l  energy vs. configuration sketch i s  drawn i n  

Figure 4. 
gram, let us  consider a simple excitation-emission process. Suppose a 

c r y s t a l  o r ig ina l ly  i n  i t s  ground s ta te  absorbs a near W photon, ra i s ing  

an e l ec t ron  t o  a higher o rb i t  and thereby the c rys t a l  t o  an excited s ta te .  
According t o  the Frank-Condon principle i n  molecular spectroscopy, the 

t r a n s i t i o n  liae shown by (1) is ve r t i ca l  because such electron t r ans i t i on  

takes  place i n  a t i m e  short  as  compared t o  the l a t t i c e  vibration period. 

To i l l u s t r a t e  the use of such a Configuration Coordinate dia- 
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The typ ica l  l ifetime of the excited s t a t e s  i s  

l a t t i c e  vibrat ion i s  of the order of 10 sec, therefore, there i s  consi- 

derable time a t  the disposal of the ac t iva tor  center t o  come i n t o  thermal 

equilibrium with the l a t t i ce .  

eonffgcratfm, v i ~ h  cmsiderabh thermal motion. This excess energy is 

dissipated a s  phonons (Step 2) and the system moves t o  a lower vibrat ional  

level ,  and the configuration coordinate changes u n t i l  the equilibrium con- 

f igurat ion for  the excited s t a t e  i s  reached. 

sec and the period of 
-12 

The c r y s t a l  i s  now i n  a non-equilibrium 

The excited electron then returns  to the ground s ta te ,  with the 

emission of luminescence radiat ion (Step 3) which shows the emission of 

a photon of less energy and hence longer wavelength. 

denoted by 4, is  the thermal diss ipat ion of excess vibrational energy i n  

the form of phonons a s  the system drops back t o  i t s  lowest vibrat ional  

leve 1 

The f i n a l  step, 

The configuration coordinate diagram proves t o  be very useful  i n  

dealing with the depandence of luminescence phenomena with temperature . 
I f  the temperature i s  high enough and the center receives ample thermal 

energy t o  reach the E r  level, then the e lec t ron  has a high probabi l i ty  of 

jumping t o  the ground s t a t e  with no change i n  energy, i.e., completely 

rad ia t ion less  t rans i t ion .  

the form of heat. The vibration level  "Er" i s  a function of temperature 

and therefore,  the luminescence phenomena w i l l  be temperature dependent. 

The excess energy is  given t o  the l a t t i c e  i n  

Williams (26) has calculated the configuration coordinate curves 

and predicted the t rans i t ions  of emission and absorption using approxi- 

mate wave functions i n  the case of KCl:Tl, and assuming tha t  the exci- 
tingphotonwas absorbed d i r ec t ly  by the ac t iva tor  center. .There a re  

other  processes where the absorption i s  due t o  some other impurity, called 

a sens i t i ze r ,  which is  introduced i n  order t o  enhance absorption outside 

the ac t iva tor  band, 
t o  a quantum mechanical resonance phenomna which can occur i f  the ac t i -  

I n  t h i s  case the energy t ransfer  i s  said t o  be due 

- 
(27) vator  and sens i t izer  wave functions overlap. 

I& us now derive, i n  short, an expression for  the absolute quan- 

tum eff ic iency e, taking in to  account a l so  the self  absorption of the 

luxninescent rad ia t ion  by the phosphor and the substrate. The d e t a i l s  a re  
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shown in the report  by Bruner, (6) 

given here, 

thickness T has been illuminated by the W radiat ion of Jo photons/cm /sec. 

Using Bougues law (") and the i n i t i a l  boundary conditions, one gets: 

However, only the relevant equations are 
Consider the f igures  Sa, Sb i n  which the phosphor screen of 

2 

-a J = Joe ? (4-2) 

where K is the constant of proportionality re la ted t o  the absorption coef- 

f i c i e n t  i n  the W. 
There are few more assumptions i n  the remaining steps. F i r s t ly ,  a l l  

the incident W photons are assumed t o  be absorbed a t  the place of impact. 

This i s  very true a t  or near normal incidence. (30'31) Secondly, the emis- 

sion of the luminescent v i s ib le  l ight  i s  supposed t o  occur a t  the same 

place where the exci t ing W pho tonh i t s  it. 

phor produce spherical  w v e s ,  and correlating t h i s  with the f ac t  t ha t  the 

observations are made i n  the direct ion of the photometer, tha t  Bougues law 

holds in the v is ib le  a l s o  with a different  absorption coeff ic ient  K', and 

tha t  the integrat ion is  t o  be accomplished over the en t i r e  thickness, T, 

we obtain f inal ly:  

The t iny c rys t a l s  of the phos- 

~ T T  o K-K K -  
-K'T - I = -  7 8  J ---[e (4-7) 

where c i s  the absolute quantum efficiency, I is  the t o t a l  in tens i ty  i n  
2 

photons/cm /sec, and T i s  the transmission coeff ic ient  of the substrate 

i n  the v is ib le  region, 

rad ia t ion  with thickness, B r ~ n e r ' ~ )  defines a new parameter, the "response 

function," R (K,#',T) : 

With a view t o  study the curves shoving the grownth of luminescent 

(4-81 T S J ~  K-K' 
4nI R(R,K',T) = - = - 

After  defining two other quantit ies,  f3 .= KT and y = Kk', we have: 

(4- 11) 
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I 

Now for  various values of y (see appendix A ) ,  the theore t ica l  curves between 

R and B can be drawn. 
The transmission coefficient of the phosphor sample 7 '  i n  terms of T 

-R'T 
i s  devined as 7 '  = e . The opt ica l  density 

% 

D = Log 7 1 = p Logloe , so that:  
10 7 

The curves between R and B have been shown i n  f igures  6a and 6b on 

They are representative of many physical phe- linear and semilog scales. 

n e n a  a s  discussed i n  d e t a i l  by Bruner(6). The thickness parameter w a s  

found from an opt ica l  VS. a rea l  density graph (described l a t e r  on), and, 

i n  order t o  f i x  the value of y, the experimental and theore t ica l  curves 

on the same scale were matched. 

constants i s  given by Bruner(6) as: 

The photometric equation expressing response i n  terms of ce r t a in  

where I A w i s  the t o t a l  flux entering in to  the aperture, A (see 

Figure 7) and S 

has been carr ied out over the intervals  of wavelength dh, because the 

luminescent radiat ion is not monochromatic. 

p eff P 
is the responsivity of the photometer, The integrat ion 

P 

The thermopile response equation i s  also reproduced below from 
Bruner's report: (6 1 

The equations Lzaling with the inter-ca 

periment are  as below: 

hc 
CTc = IC A w' T e f P c T  'T 

C 

(4- 16) 

ibration par t  i n  t h i s  ex- 

(4-2 1) 
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= IC Ap w2ef f  s p (Ac) Pc 

Finally, we get an expression for e :  

Page 19 

(4-22 1 

(4-24) 4n AT' '?: 6 -  (Ac> 6 1'0) dA C Xc 1 Cp 

f I' (A) s (A) dh C h R C T  
. -F -  

Tc - .  e =  
T m ' e f 8 T  P-' P Pc 

The meanings of different symbols used ere given i n  the report by Bruner. ( 6  1 
This expression w i l l  be further simplified later on in  view of the experi- 

mental limitations. 
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A BRIEF DESCRIPTION OF ‘ME APPARATUS 

The Vacuum Spectrograph 

The main instrument employeed i n  t h i s  work was a grazing incidence 

vacuum monochromator with a fixed grating of one meter radius  and having 

6000 lines/-. 

tha t  the plane of a sl i t  mounted upon i t  always faced the grat ing (Figure 

A traveling stage was driven along the Rowland c i r c l e  such 

8). The spectrometer has been described fu l ly  by other investigators.  (3Y6 Y 12,331 
A pressure of about ~ x I O - ~  nrm of mercury was achieved by a Kinney 

KC -15 mechanical pump, a CVC model MC 500 o i l  diffusion pump (cooled by 

l iquid nitrogen) and another water cooled o i l  diffusion pump CVC model 

MC 275. 

crons wide; so that the thermopile and the photometer could produce mea- 

sureable response signals. 

resul ted i n  loss  of resolution, but for  the f ac t  tha t  the spectrum i n  t h i s  

experiment consisted of widely separated lines. 

The entrance and the e x i t  s l i t s  (windowless) were nearly 500 mi- 

These large s l i t  sizes,  of course, would have 

The W r e f l e c t i v i t y  of the grating was improved by about 33% by 

deposit ing evaporated platinum on it. 

w a s  used by Watanabe. (*) 

a t  the axis of the hollow cathode of the W source (the Schueler lamp des- 

cribed i n  the following section) by the investigator,  and while the source 

w a s  operating, i t s  entrance window was opened. In  t h i s  way, platinum was 

coated on the grat ing surface a t  the place w h e r e  it i s  most needed. 

4 spattering technique of t h i s  type 

A pure platinum wire coiled i n  i t s e l f  was inserted 

The Schueler Source 

Newburgh (28) and h i s  associates have described a Schueler source, 

a hollow cathode discharge lamp, for the production of W lines from ion- 

ized atoms. 

burgh’s design) made by the investigator t o  s u i t  the present experimental 

needs are  given i n  Figure 9. The cathode (open a t  both ends) i s  constructed 

from a pure, hollow graphite cylinder about half  an inch i n  outer diameter 

and having a thick w a l l .  

The main features  of the one (a s l i gh t  modification of New- 

The four s ta inless  s t e e l  (about 8 inches long) rods 



. 
. 

Vacuum Monochromator 

Figure 8. 

21. 



. 



Page 23 

doubly covered with a quartz tube were prodded t o  conduct power. 

were kept i n  shape and fixed i n  position by the use of a superior type 

"epoxy . 
These 

Most intense discharge glow between cathode and the surrounding 
--- 17 
W U A ~ S  of tkii a=&e rake place at the ax i s  of the hollow cathode, 

the stop cock is opened, the radiat ion en ters  the main spectrameter cham- 

ber. The pressure i n  the source tube i s  maintained a t  about ,17 m of 

Hg, for any gas under discharge. This pressure is regulated through a 

number of needle valves i n  the source control cabinet and recorded by a 

Pirani  gauge. The gas entering into the monochromater through the s top 

cock (windowless) i s  directed towards the mouth of the diffusion pump and 

is  constantly pumped out t o  maintain suf f ic ien t  vacuum i n  the large cham- 

ber. The in tens i ty  of the l ine  depends upon the source current  and pressure. 

However, t o  avoid self-absorption, the pressure should not be excessive, 

When 

The Source Control Cabinet 

(6 1 As shown i n  Figure 10 and a l so  mentioned i n  d e t a i l  by Bruner, 
The source control cabinet i s  a portable rack containing e l e c t r i c a l  

controls  for power supply, Pirani gauge, and the source gas aetering sys- 

t e m  made by Bruner(6) (see Figure 11). 

i n t o  the Schueler source through two needle valves was regulated w e l l  

enough t h a t  even a f t e r  long periods of operation there w a s  no noticeable 

d r i f t  i n  the in tens i ty  of the spectrum lines.  The l ine  diagram fo r  the 

gas metering system is  given i n  Figure 10, A mixture of two di f fe ren t  

gases can a l so  be prepared and fed i n t o  the Schu6ler source fo r  discharge. 

It w a s  in te res t ing  t o  observe that a mixture of 30% hydrogen and 702 

helium quenched the molecular bands of the former and thus the atomic l ine  

1216 A (the hydrogen Lyman alpha l ine)  i n  the W was essent ia l ly  isolated,  

The pressme of the gas flowing 

With a view t o  secure a comfortable s ignal  t o  noise r a t i o  i n  re- 

corders, i t  was e s sen t i a l  t o  keep the source stable.  Moreover, the ob- 

servations f o r  the incidnet photons impinging upon, and the luminescent 
rad ia t ion  emerging out from the phosphor are made a f t e r  the lapse of some 

t i m e  in te rva l ,  The two measurements should be quite consistent. Therefore, 

a %artesian manostat," manufactured by the Manostat Corporation, and 
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F igure  10. 
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described fu l ly  i n  Bruner's report(6) was used i n  the gas mtering wstem, 

By i t s  proper adjustment and careful usage, a f a i r l y  constant pressure can 

be maintained i n  the ionizing gas inside the Schueler source. 

An example w i l l  make the operation clear (see Figure 10). Suppose 

-we have tc c5ser-t- the 304 A nf helfum* We evacuate the whole upper mani- 

fold and r inse i t  with helium and again evacuate it. Then we allow helium 

gas a t  1000 mm of Hg t o  en ter  through e i t h e r  valve 1 or 3, closing 5 of 

course. Needle v a l w  7 i s  opened t o  control  the flow of helium through 

the Cartesian manostat a t  50 mm of Hg. 

flow through valve 17 i n t o  the Schueler source. The reading of the Pirani 

gauge in t h i s  case sould be about 0.19 mm of Hg, although upon opening the 

s top cock, the pressure may drop down t o  an acceptable value of about 0.17 mo 

of Hg where it remains when adjustments are properly completed. 

Finally one allows the gas to  

The Power Supply 

The power supply, mounted on a portable rack, has a transformer (in- 

put 220 vo l t  and output 7500 volt) ,  a r e c t i f e r  un i t  (two 872 A RCA, mercury 

vapor rect i fying tubes i n  conjunction with a 0.1 mocrofarad capacitor) and 

a bank of twenty-five 100 w a t t ,  120 vol t  filament lamps connected i n  the 

series configuration t o  serve as a ballast r e s i s to r .  

vo l t  DC a t  1.0 amperes. 

with the high voltage cable up t o  the terminal of the Schueler source. 

It produces about 4000 

The simplified c i r c u i t  is shown i n  Figure 12 along 

The 600 mA current  controlled by means of a variac i s  best suited 

f o r  maintaining a s table  discharge of a l l  the gases fo r  t h i s  work (except 

argon and neon fo r  which it should be less).  The filaments of the two 872 

A RCA tubes are heated by a 5 vol t  AC supply as shown i n  the diagram. 

sa fe ty  plug was a l so  f i t t e d  i n  the HV c i r c u i t  t o  avoid accidental  shock 

while repairing. 

A 

Densitometer Photometer and Acce ssorie s 

The photonreter un i t  was required t o  find out the values of 8 fo r  the 

d i f f e r e n t  samples of phosphor (Ca W04:Pb). It includes a high pressure 

quartz Hg vapour lamp, a Corning red-purple u l t r av io l e t - f i l t e r ,  a thick 

phosphor screen and an Aminco Mode1 No. 10-213 densitometer photometer. 
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The Hg lamp and the f i l t e r  provided W energy t o  exc i te  the phosphor i n  the 

same way as they would be illuminated i n  the ac tua l  perfomance, 

A large number of Ca WO :Pb samples of varying thicknesses were pre- 4 
pared, with the use of microscope cover glasses  a s  substrates  (22  mm by 

22 mi). 

poured on the substrates  and allowed t o  dry. 

posit ions were measured by weighing them (Table No. l). Sone of the Sam- 

ples  were made by the spraying method. 

A sokt i zn  cf t%e I?f .~s~hnt was prep red  i n  isopropyl alcohol and 

Areal dens i t ies  of the de- 

A rectangular aperture (smaller than the cover glass) w a s  tied se- 

curely before one of the thick phosphor screens. 

tometer amplifier w a s  adjusted t o  read f u l l  scale, i.e,, zero density, when 

the source operated without any sample i n  the opt ica l  t ra in .  The d i f f e ren t  

samples were then placed behind and photomter readings noted. The densi- 

tometer w a s  cal ibrated d i r ec t ly  t o  read opt ica l  density,  

plotted fram Table No, 1 (see Figure 16). The resul t ing s t r a igh t  line cu t  

the ordinate a t  a point whose reading, when subtracted from the t o t a l  

The densitometer pho- 

A graph was 

readings, gave the opt ica l  density of the 

materia i . 
?hennopile and Accessories 

The investigator used a thermopile 

phosphor regardless of 

purchased from Charles 

substrate 

M, Reeder 

and Co., Michigan. Some of its d e t a i l s  are  given i n  a paper by Brown, (32) 

but the advantages and disadvantages are dea l t  with i n  a d i f f e ren t  paper 

by Samson. (4) 

2 mm. 
co l lo ida l  gold. There are cmpensattng junctions a l so  but these were not 

used i n  t h i s  experiment, The response from the thermopile is fed i n t o  a 
Liston-Secker amplifier (which i s  a D.C. breaker amplifier) model 14, Stam- 

ford, Connecticut. 

cha r t  recorder, bode1 AIJ, Indianapolis, Indiana. (See Figure 13). The 

response of the thermopile ( i n  a vacuum) i s  measured i n  microvolt8 per 

microwatt . 

The one used here had f ive  junctions, each about 1 unu by 

These are made of th in  gold s t r i p s  and blackened with evaporated 

The output is recorded by an Ester l ine Angus s t r i p  

A motor driven switch which in te r rupts  the input s ignal  from the 

thermopile e ight  times per second forms the hear t  of the DC breaker ampli- 

f i e r  mentioned above. A s  a result of t h i s  switch, the square wave so 
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Samplt 
NO . 
1 
2 
3 
4 
5 

6 
7 
8 

9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 - 

Areal 
Density 

12  . 9 1  
5.33 

12.04 
10.78 
4.21 

11.61 
9.30 
9.05 

5.41 
13.07 
6.72 

11 . 37 
23 . 92 
5.57 
6.82 
9.30 
8.06 
7.44 
7.2 
6.7 

TABLE NUMBER 1. 

Optical Density 
Phosphors & Sub- 
strate. 

.97 

.73 

.94 

.97 

.63 
94 

.97 

.85 

. 73  
1.15 

.64 

.91 
1.32 

.63 

.61 

.65 

.90 

.62 

.78 

.66 

Optical  Density 
of Imosphors. 

.39 

.15 

. 36 

.39 
005 

.36 
0 39 
.27 
.15 
.57 
.06 
. 33 
. 74 
05 
. 03 
07 

.32 
04 

.20 

.08 

- 
B - 

09 
. 3  
82 

-9  
11 
. a3 

-9  
.62 
. 3  

1.3 
14 

.75 
1.7 
.ll 

. 07 

. 16 

.74 
009 
-46 
. i a  - 
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generated i s  fed i n t o  a powerful amplifier and then i n t o  a synchronous 

switch for  f i n a l  rec t i f ica t ion .  In  t h i s  waythe thermopile response signal 

is suf f ic ien t ly  amplified and reproduced on. a constantly moving chart  by a 

f ine  recording pen, I n  order t o  shield the noise currents  of the order of 

a few mocrovolts, a metal can was used. 

some hours till the chamber does not Slim aiiy sfgnificent pressure and 

temperature var ia t ions which cause the noise , 

The worker has t o  wait fo r  quite 

The probabili ty of energy l o s s  due t o  the photoelectric e f f e c t  

termed here as "photoelectric-cooling" w a s  not ruled O u t  completely i n  view 

of the f a c t  tha t  the work function of the thermopile material  i s  less than 

the energy of the W photons used t o  exci te  luminescence. 

vised a unique technique of "retarding potentials" t o  ver i fy  the otherwise 

unaccounted for loss  of energy and t o  make subsequent corrections. 

fortunately so l i t t l e  "cooling" was detected tha t  the e f f e c t  could be ig- 

nored in the f i n a l  computations. 

Bruner(6) de- 

But 

The Sample Holder 

As shown i n  Figure 14a and 14b, the sample holder i s  a plate  made 

one for  the  thermopile and the other of Lvraaa vkfch cn%tn_lnn two openings: 

f o r  the photoroeter. 

s l i t  one a f t e r  the other by sliding them i n t o  a groove of another big brass 

plate mounted on the manning arm table.  This was achieved very accurately 

by m a n s  of a remote control  threaded axle of a 28 DC motor and two l imiting 

micromitches, The center of the e x i t  s l i t  was constrained t o  move along 

the Ruwland circle, 

The opening pieces can be positioned behind the ex i t  

The Photometer 

The photomter was specially designed by Bruner") (see Figure 15) 

t o  s u i t  the requirements of t h i s  par t icular  experiment in the work shop of 

the department. 

su i tab le  lenses and a rectangular f i e l d  stop. 

from the phosphor w a s  f i na l ly  focussed on the cathode of the 931 A RCA pho- 

tomult ipl ier  tube by means of several appropriate adjustments. 

of the outer cylinder behind the phototube, a red test lamp was fixed. 

could be l ighted up and i t s  intensi ty  controlled by a switch outside the 

A 1.9 camera l ens  w a s  used as an objective, along with two 

The luminescent radiat ion 

A t  the end 

It 
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chamber for  frequent measurement verifications.  

i n  Bruner's report. 

The other d e t a i l s  are  given 
( 6 )  

The high voltage power supply for  the photometer was such tha t  i t  

produced about 800 vo l t s  t o  be delivered t o  the base of the 931 A tube. 

The General Radio 1230- A DC amplifier and electrometer was used t o  mea- 

sure the cusrent which is re lated to t'he luminesceat fntsnsity. 

r en t  w a s  recorded on an Ester l ine - Angus chart ,  s i m i l a r  t o  tha t  used i n  

the case of the thermopile. 

changed by means of an input resistance. The dark current,  or  the so called 

background in tens i ty  of the tube selected for  t h i s  work, was very small and, 

as such, i t  provided dependable data. 

This c w -  

The sens i t iv i ty  of the electrometer can be 

The Experimental Procedure 

After removing the grat ing cover, one of the phosphor samples and 

the photometer were positioned behind the e x i t  slit. The vacuum chamber 

was then evacuated by using a l l  the pumps i n  the required order u n t i l  the 

Phi l ips  Pressure guage PHG-09 (Consolidated Vacuum Corporation) recorded 

about 5x10 nnn of mercury. The Schueler source and the upper part  of the 

gas a~zeriixg i z ~ r ; i f ~ l d  :?ere rinsed with the gas t o  be used and then evacu- 

ated. The gas w a s  then allowed t o  enter  the Schueler source and the l a t t e r  

f i red .  The ionizat ion current i n  the plasma was kept a t  600 nA. Usual ly ,  

i t  requires  about 30 minutes time t o  s t ab i l i ze  the source. The power for  

the thermopile and photometer recorders was already turned on four hours 

i n  advance. 

-5 

The exi t  s l i t  at the scanning arm was set very near t o  the monochro- 

When a l l  worked sa t i s f ac to r i ly  fo r  so= t i m e ,  matic radiat ion i n  question. 

the entrance s l i t  was opened. A t  t h i s  stage the pressure of the chamber 

changes a little; because the Schueler source requires  a higher pressure 

than the chamber. However,  the newtral gas is directed toward the mouth 

of the big diffusion pump and so carried away without disturbing the va- 

cuum of the chamber t o  a large extent. The sens i t i v i ty  of the amplifier 

e l e c t r o m t e r  i s  adjusted and the monochromatic ra idat ion i s  scanned com- 

pletely.  

by the test lamp. 

Several readings of such scans were taken. The checks were made 
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Afterwards, the phosphor sample i s  shifted aside and the thermopile 

takes i t s  place. Uhen the thermopile es tab l i shes  a radiat ive steady state 

with the walls of the chamber and other surroundings, the in tens i ty  of the 

irradiance i s  measured. The investigator has t o  invariably use about four 

black shields  on both the s ides  of the monochromatic radiat ion path between 

the grat ing and the e x i t  s l i t  i n  f ront  of the theiiixqile. 

s t ray  l i gh t  reflected from the walls of the chamber can be cut off. 

s tan t  value in te rna l  signal was put on frequently t o  check the responsit i-  

v i ty  of the Liston-Becket amplifier. 

11.u this  way: 

A con- 

Observations as described above were made fo r  a l l  the samples a t  

five d i f f e ren t  W spectral  l ines  known t o  be f a i r l y  intense, i.e., 304 A 

of helium, 461 A of neon, 584 A of helium, 1048 A of argon, and 1216 A of 

hydrogen. 

The Intercal ibrat ion 

The l i g h t  from the quartz mrcury discharge tube operated by a Sola 

Constant Voltage transformer was allowed t o  f a l l  on an opal g lass  piece, 

3/4 square inch, and the diffused radiat ion then allowed t o  pass through 

a i r a t t en  77 A f l l ter  ::t..icfi Isolated the 5461 A. A bo t t l e  of copper sul- 

phate solution vas kep t  i n  the opt ica l  t r a i n  t o  remove the infrared radia- 

t i on  which otherwise would e f f e c t  the thermopile response. 

of these f i l t e r s  and a = t a l  shutter, the background in tens i ty  was a l so  

noted. The thermopile was four inches away from the opal glass. 

vations were made with the e x i t  s l i t  removed and the chamber evacuated. 

With the use 

Obser- 

Afterwards, the thermopile was removed and i n  i ts  place the photo- 

meter w a s  so oriented t h a t  i t s  object plane coincided with the diffuse 

surface of the opal glass. 

wiched between the two t o  reduce the signal strength. 

were taken with t h i s  arrangement without evacuating the chamber. 

Of course, a neutral  density f i l t e r  was sand- 

Several readings 

It was f e l t  during the course of experiment tha t  the copper sul- 

phate solution was not completely cut t ing off the infrared and, therefore, 

a Wratten 25 f i l t e r  i n  addition to the other elements w a s  introduced. 

This f i l t e r  i s  supposed t o  quench the 5461 A of mercury completely but t o  

pass the the infrared. This revealed t h a t  about 13% of the infrared does 
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penetrate through the copper sulphate solution, and so it was accounted f o r  

i n  the thermopile readings fo r  the purpose of f i n a l  calculations of the 

quantum e f f i c  iency . 
(see Eq. 4-24) a photo- 

l e f f  
I n  order t o  find the r a t i o  of UZeff and w 

graph was obtained while the photomter remained positioned behind the s l i t  

p lus  the phosphor sample, arid the diizct r ~ f l c c t e d  lfght frm the grating 

provided the illumination fo r  the camera. The areas were measured by the 

Keuffel planimeter (see Figure 18) upon an enlargement of such a photograph. 



. 
CHAPTER I11 

ANALYSIS OF THE DATA 

The value of B (thickness parameter) for  each sample was found from 

the experimental curve (opt ica l  density vs. a r ea l  density) with the help 

of the relat ion:  

phor only and can be obtained by subtracting the density of the substrate 

which,inour case, i s  taken t o  be the point where the experimental s t ra ight  

line intersected the Y-axis (see Figure 16). 

B = D/Log e ,  where D is the opt ica l  density of the phos- 

Next s tep  vas t o  draw the semi-log type graph ( re la t ive  response vs. 

B - the thickness parameter) for  each sample on the same f ive W wavelengths 

and then match them with the theoret ical  curves drawn e a r l i e r  on the same 

scale. I n  order t o  do t h i s ,  the values of re la t ive  response, r, (not the R 

which is response function; because the value of y is yet  t o  be fixed by 

matching the experirnental and theoret ical  curves on the same scale. That 

i s  why 'r' has been ten ta t ive ly  used i n  place of 'R') defined below were 

calculated from the observed data. 

- -  
m r m  I LA. - 

readings, PT i s  the average 

the thermopile readings and 

, 

of 

TT 
- 

test signal readings. I n  t h i s  

i n t e rna l  test signal, 

where ? i s  the average of the photometer 

- 
the t e s t  lamp readings, T is the average of 

i s  the average of the thermopile amplifier 

case a l l  checks were done by a 0.1 micro-volt 

Upon drawing the curves, it was found tha t  they could be eas i ly  

matched with the theoret ical  curves between R and 8, 
It may be mentioned here that  the photometer amplifier s ens i t i v i ty  

w a s  kept a t  3 x 

the PT measurements the lamp current was 54 mA. However ,  f o r  in te rca l i -  

b ra t ion  the sens i t i v i ty  was fixed a t  3 x 10 amps, lee . ,  0.1 of the pre- 

vious value. 

amps throughout the course of measurements, while fo r  

-8 

Similarly the coarse gain set t ing of the Liston-Becker amplifier fo r  

use in recording the thermopile response was constantly kept a t  18, f ine 

ga in  a t  f u l l  scale, and the position range a t  3. 

s igna l  w a s  used t o  evaluate the value of E. 
A 0.1 micro-volt in te rna l  
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The approporiate gases were introduced in to  the Schueler source a t  a 

constant pressure of 0.17 nan of Hg and the ionization current was maintained 

a t  a fixed value of 600 mA i n  a l l  cases  except for  argon. 

The f i n a l  measurements consisted i n  determining the rest of the para- 

meters i n  the expression for  e .  The in tegra ls  were evaluated graphically 

w i t h  the help of a planinreter, and with the use of the emission spectrum of 

Ca  wo :a, from D r .  ~onli'riii's ~$ssis, (12) znc! t k  relative responses of the 

RCA 931 A tube (supplied by the manufacturer) i n  d i f fe ren t  wavelength re- 

gions (see figure 17 and table 2). 

4 

w 
The r a t i o  - 2eff w a s  evaluated by taking a picture (Figure 18) of the 

wle f f 
f i e ld  s top aperture with the sample illuminated before it by the d i r ec t  re- 

f lected l i g h t  from the grating and measuring the r a t i o  of the areas with a 

4236 M Keuffel and Esser Company (Germany), planimeter. 

determined from the graph between opt ica l  and a rea l  dens i t ies  (see Figure 16). 

A T ' P T  w a s  found with the a id  of the traveling microscope, and 

calculated from the dimensions of opal ga lss  and i t s  distance from the ther- 

mopile receiver. p/p, was taken t o  be one for  a l l  pract ical  purposes. These 
values are given i n  Table No. 3. 

1 
7 

The value of - was 

was 

C 

'&e final value of c can be writ ten i n  the form a s  below: 

P Xc 5 
3-- 

1 0 h  R (6-25) 

and where r i s  the relative response found from intercal ibrat ion.  I n  fac t ,  

C,/ Cpc has been r igh t ly  replaced by l/rc, and r i n  (4-25) has replaced 

C / CT. 

used for  the photometer during intercalibration. The factor  10 takes 

care of the d i f fe ren t  se t t ings  of the sens i t i v i t i e s  of the photometer 

during the primary data and intercalibration. 

C 

The factor,  r i s  the transmission of the neutral  density f i l t e r ,  P f '  

The thermopile se t t ings  were 

not  changed. 

was found from the graph (see Table 2 

and Figure 17). The values of y Were found by tlatching the theoret ical  and 
I 
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TABLE NUMBER 2. 

3500 
3600 

3700 
3800 
3900 
4000 
4100 

4200 
4300 
4400 

4500 
4600 

4700 
4800 
4900 
5000 
5100 
5200 
5300 

5400 
5600 
5800 

6000 

I' ( A >  
Conk1 in ' 
Data. 

. 00 

.07 

.14 

.23 

.34 

.47 

.59 
71 
.8f 
.91 
9a 

1.00 
.98 
.86 
70 
.57 
.48 

.41 

.35 

.30 

.20 
11 
.04 

s ( A )  P 
n n r  n q q h  nbA- 72  A n  

.89 

.94 

.97 

.99 
1.00 
1.00 
.99 
.98 

.97 

.95 
512 

88 
. a4 

79 
74 

.68 

.63 

.57 

.51 

.45 

.30 

.15 

.03 

.oo 

.06 

.13 

.22 

.34 

.47 

.59 

.69 

.78 

.86 

. FO 

.88 

.82 

.68 

.51 

.39 

.30 

.23 

.18 

.13 

.06 

.01 

. 00 
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TABLE NUMBER 3. 

VALUES OF CONSTANTS. 

*TI - = .5a A- T 

r = 2.13 
C 

Optical density of 
the substrate = -58 .  

- e  3.802 
T 

2 e f f  = 8.7 

leff 

W 

w 
- 

-3 
rf = ,924 x 10 

.75 x .75 %f = 

= .0351 

- =  " 1  
PC 

N 
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. 
experimental curves, and i n  this  way the value of R was fixed. 

the value of c w a s  determined a t  5 W wavelengths (see the constants i n  

Table 3). 

Eventually, 



4s. 

TYPICAL CHART FOR OBSERVATION OF r 

1 
2 
3 
4 
5 
6 
3 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

09.40 
09.46 
09.53 
10.21 
10.45 
10.55 
11.25 
11.35 
11.43 
12.48 
13.15 
13.30 
14.05 
‘14.18 
14.35 
15.30 
15.48 
16.00 
16.10 
16.15 
16.25 
17.20 
17.45 
18.00 

Sample Number 9, p = . 3  
Obs. Time Source Reading 
bI0 . 

p3 
p, - 

T3 
T5 

p3 
pS 

T3 
T5 

p3 

T3 
T5 

p3 
pS 

T3 
T5 

PT 

n 

PT 

TT 

P, 
3 
ET 

TT 

PT 

TT 

16 
37 
18 
15 
28 

25 
17 
39 

20 
14 
26 
24 
17 
1. n +v 

20 
16 
25 
24 
17 
40 
20 . 

14 
28 

25 

Remarks 

P -photometer response 

P,-photometer response 

PT-photometer response 
at test lamp. 

T -thermopile response 
at 304 A. 

T ..thermopile response 
at 584 A. 

TT-thermopile response 
at test signal. 

at 304 A. 

3 at 584 A. 

- P3 = 16.75 
- P5 = 39.0 

- T3 = 14.75 

- T5 = 26.75 

- 
PT = 19.50 

c 

z 31. r;n 
L-t 0 2u 

r, = 1.427 
1: = 1.832 
J 

5 
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TABLE NUMBER 4. 
Summary of data and results. 

F = 1.51, = 5461 %, A = 304 A, Jh/ = 
C 

Sample 

1 

2 

3 
4 
5 
6 
7 
8 
9 
11 
12 
13 
14 
15 
17 
18 
19 
20 

-8 

.90 

.34 

.83 

.90 

.I1 

.83 

.90 

.62 

.34 

.14 
76 * ' "  

1.7 
11 
.07 
.74 
.09 
.46 
-18 

.4066 

.7082 

.4364 
-- 
.8920 

.4364 

.4066 
,5373 
.7082 
.8710 
,4681 
.1827 
.8920 
.9319 
.4791 
.9120 
,6313 
.8340 

r 

.81 
1.26 
.808 

1.38 
,874 
.891 
.958 

1.42 
1.60 
1.063 
345 

1.364 
1.35 
.942 

1.58 
1.097 
1.235 

* e  

5.4036 
4.8270 
5.0230 
-- 
4.1972 
5.4330 
5.9450 
4.8372 
5.4623 
4.9837 
6.1609 
5.1230 
4.1490 
3.9302 
5.3342 
4.7010 
4.7140 
4.0174 

Av. of c at 
t 

304 A = 4 .9552 .  
*(see Figure 19.) 
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TABLE NUMBER 5. 

Summary of data  and results. 
0 

F = 1.51, A 5461 A, X = 461 A, * y  = 30 
C 

Sample 

1 
2 

3 
4 
5 
6 
7 
8 
9 
11 
12 
13 
14 
15 
17 
18 
19 
20 

B 

.90 

.34 

.83 

.90 

.11 

.83 

.90 

.62 
-34 
.14 

.76 
1.7 
.11 
-07 
.74 
.09 
.46 
.I8 

R 

.4280 

.7662 
,4583 
-_ 
.88a7 
.4507 
.4280 
.8727 
.7662 

.4887 
,1890 
.8887 

.8096 

.4937 

.8468 

.6531 

.8588 

r 

.790 
I. 246 
.976 
_- 
1.800 
.960 

1.008 
1.251 
1.526 
i - 747 
1.118 
.32 

1.643 
1.280 
1.290 
1.650 
1.449 
1.574 

t(see Figure 20.) 
A v .  of e at  
461 A = 3.531 

8 

3.3016 
2.9088 
3.8094 
-_ 
3.6231 
3.8102 
4.2130 

2.5633 
3.5626 
3. v32v 

4.0922 
3.0286 
3.3071 
2.8281 
4.6740 
3.4855 
3.9688 
3.2077 

L 9 C A  
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Sample 

TABLE NUMBER 6 .  

Summary of data and results. 
0 

P = 1.51, X = 5461 %, 1 = 584 A, *y = 20 c 

1 
2 
3 
4 
5 
6 
7 
8 
9 

11 

12 
13 
14 
15 
17 
18 
19 
20 

B 

90 
.34 
.83 
90 
.11 
.83 
.90 
.62 
.34 
. I 4  

.76 

1.7 
.11 
.07 
.74 
.09 
.46 
.18 

R 

.4279 

.7442 

.4635 
-- 
.8265 

.8334 

.4635 

.5662 
-7462 

.8503 

.4978 

.1923 

.8265 

.7214 

.so22 

.7924 

.6645 

.8499 

r 

.8591 
1.653 
.9685 
-_ 

1.858 
1.157 
.8522 

1.24 
1.831 
1.75 
1.128 

.364 
2.02 
1.339 
1.424 
1.66 
1.561 
1.696 

c 

2.8349 
3.1306 
2.9504 
_- 
3.1742 
1.9603 
3.3390 
3.0923 
3.5740 
2.9060 
3.1995 
2.6727 
3.4510 
2.6260 
4.0270 
2.9580 
3.3170 
2.8180 

*(see Figure 21.) Av. of Q at 
584 A = 3.017 



/ 

0 

51 r 

3 

I l l  I I I 1 0 
M m a , + * c q  In 0 

O d o o d  0 

0 - 
Q 

00 
d 

J 



.. 
. *  52. 

TABLE NUMBER 7. 
Summary of data and results. 

F = 1.51, A = 5461 1, X = 1048 A, * y  = 15 
0 

c 

Sample 

1 
2 
3 
4 
5 
6 
7 
8 
9 
11 
12 
13 
14 
15 
17 
18 
19 
20 

.90 
(. 34 

.83 

.90 

.11 

.83 

.90 
-62 
.34 

.14 

.76 
1.7 
11 
.07 
.74 
.09 

.46 

.18 

*(see Figure 22.) 

R 

.4355 

.7819 

.5176 
-- 
.7542 
.4670 
.4355 
.5763 
.7ai9 
.8006 
.5063 
.1957 
.7542 

.5821 

.5112 

.6549 

.6753 

.8223 

r 

.670 

.910 
1.01 
_- 
,770 
.965 
.968 

,519 
1.563 
1.492 
1.05 

.399 
1.679 
1.358 
1.174 
1.329 
1.289 
2.149 

e 

1.2105 
.9157 

1.5353 
_- 

.8033 
1.6427 
1.7489 
.7086 

1.5728 
1.4663 
1.6318 
1.6041 
1.7516 
1.8355 
1.8070 
1.5966 
1.5018 
2.O562 

Av. of e at 
1048 A = 1.494 
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TABLE NUMBER 8 .  

Summary of data and results. 
f 0 

F = 1.51, 1- E 5461 A, X = 1216 A, ;ky = 10 

Sample 

I 
2 
3 
4 

5 
6 
7 
8 
9 
11 
12 
13 
14 

15 
17 

18 
19 
20 

B 

.90 - 
e 34 

.83 

.90 

.11 

.83  

.90 

.62 

.34 

.14 

.76 
1.7 
.11 
.07 
74 

.09 
,46 

.18 

R 

.45fS 

.7677 

.4889 
-*  

.6258 

-4841. 
.4515 

.5958 
7677 
.6922 

.5245 
,2030 
.6258 
.4838 
.5294 
.5640 
.6903 
.7438 

r 

ZtO04 
1.50 
1.00 
-* 

1.13 
1 m 112 
1.280 
1.414 
1.598 
1. 283 

1.242 
.420 

I. 244 

,838 
1.275 
1.597 
1.30 

? 

e 

1.5080 
1.3249 
1,3870 
-a 

I. 2244 

I. 5576 

I. 9224 

1.6093 
1.4115 

1.2569 
1.6057 
1.4030 
1.3480 
1. 1745 
1.6331 
I. 9201 
1.2770 
-- 

* (see Figure 23.) 
Av. of c at 
1216 A = 1.473 
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CHAPTER IV 

CONCLUSION 

The theory re la t ing  the relat ive luminescence yield of a th in  screen 

and a r e a l  density of the screen i s  i n  sat isfactory agreement with the exper- 

5 z e t z l  observations. The equation for the response function i n  terms of 

dimensionless parameters i s  par t icular ly  convenient for  calculations and 

should be applicable t o  a wide variety of phosphors. 

The inferences which may be drawn from the r e s u l t s  of t h i s  experi- 

ment s t e m  from two fac t s  about the phosphor CaIJO :Pb which appear out of 

the present analysis;  namely, the absolute quantum eff ic iency i s  greeter  

than unity between 304 A and 1216 A, and the absolute quantum eff ic iency 

decresses with increasing wave length with a trend toward reaching a con- 

s tan t  value a t  wavelengths greater than 1000 A. 

quantum eff ic iency of CaUO 

3.02 a t  584 A, 1.49 a t  1048 A and 1.47 a t  1216 A. 

tungstate phosphor (34) between 2200 A and 4000 A. 

LISSI-W~ tha t  absorption of the W radiation, a t  l e a s t  i n  the region of 

4 

The value of the absolute 

Pb was found t o  be 4.95 a t  304 A, 3.53 a t  461 A, 4: 

There has been no confirmed report of the photoconductivity i n  a 

It has been generally 

- F  
the f i r s t  l a t t i c e  absorption bands, produces only exci ta t ion of the iKl 

ion and tha t  f ree  e lectrons are not formed. Hmever, Randalls and Wilkins 

have shown tha t  this compound i s  s l ight ly  photoconducting while fluorescing. 

The experimenters claim tha t  t h i s  property i s  cer ta in ly  not due t o  chance 

(35) 

impurity. The s imi la r i ty  of the emission spectra of various tungstates (34) 
-2 

strongly suggests tha t  the W04 

of D r .  Conklin(12) gives added support t o  t h i s  viewpoint. 
-2 

the ionization potential of the W04 

strongly suggests t ha t  a l l  the W photons between 304 A and 1216 A w i l l  

be e f fec t ive  i n  the production of secondary photoelectrons, which, i n  turn, 

are responsible for  the f ac t  tha t  the absolute quantum eff ic iency i s  greater  

than unity. 

tungstates  only i f  i t  i s  present i n  the proper c o n ~ e n t r a t i o n . ( ~ )  

present experiment lead was 0.7% by weight of CaWO:. 

ion i s  the luminescent center. The work 

The f a c t  t ha t  

ion group i s  about 5.6 eV (2200 A), 

Lead i s  an act ivator  for  the phosphorescence of calcium and strontium 
I n  the 

With such a small 4 
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concentration of lead, CaWO centers  would surely dominate. Apparently the 

only function of lead i s  t o  increase the absorption wavelength and the peak 

emission wavelength. This can be seen as a s l igh t  change i n  the shape and 

posit ions of the potent ia l  energy curve representing the f i r s t  exci ted state, 
corresponding t o  a s l igh t  d i s to r t ion  of the la t t ice  by the lead ions, 

4 

(12 Y 36) 

Among the fac tors  t ha t  determine whether a sol id  shows photolumines- 

cence or  not, the state of c rys t a l l i za t ion  i s  of p r h a r y  i i i i p . i - t i x i C E .  KZc?ger 

shows t h a t  calcium tungstate, when made by prec ip i ta t ion  from a solution, i s  

obtained i n  the form of small, womewhat imperfect c rys t a l s  which are prac- 

t i c a l l y  non- luminescent but which acquire luminescence upon changing t h e i r  

character by fur ther  a l t e r a t ions  produced primarily by, heat treatments. He 

has  fur ther  showm t h a t  d i ss ipa t ion  of the absorbed energy i n  tungstate phos- 

phors generally increases a t  higher temperatures. It i s  qui te  l i ke ly  tha t  

the presence of an optimum amount of lead may not only help the c r y s t a l l i -  

za t ion  process of calcium tungstate but  a l s o  may modify the energy levels 

as t o  increase the eff ic iency of emission. 

(16) 

Another poss ib i l i t y  i s  tha t  the powerful 304 A photon may knock out 
-2 an e lec t ron  from the WO 

energy t o  exc i t e  the lead atom and give r i s e  t o  luminescence. 

z a y  ?xihave par t ly  as a photoconducting ard partly as a n o n - p h = t = c m d ~ c t h g  

phosphor . 
Botden's paper (17) where i t  i s  assumed tha t  the place of absorption and 

place of emission are d i f f e ren t ly  located within the phosphor. The trans- 

fer process (a s o r t  of co l l i s ion  of the second kind, as  i n  gases) i s  based 

upon quantum mechanical resonance of the excited state of the primary ex- 

c i t ed  atom with t h a t  of another atom (whether of the same kind or  not). 

quantum mchnaical  theory by Kallmann and London (37) indicated tha t  even 

the op t i ca l ly  forbidden t rans i t ions  may vel1 occur through resonance pro- 

cesses. Also, the observed distances of more than 100 A over which trans- 

fer can take place are made plausible. It i s  very l ike ly  tha t  the behavior 

of lead i n  ce r t a in  optimum amounts i n  CaVO may be responsible fo r  t h i s  

t y p  of quantum mechanical resonance as described above, and i t  may act as 

a via-medium between the places of absorption and emission of energy i n  the 

group and t h i s  photoelectron may t ransfer  i t s  4 
Thus CaW04:Pb 

The la t ter  poss ib i l i ty  i s  not completely ruled out i n  view of 

A 

4 
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phosphor. 

as t o  phosphor behavior under high energy excitation. 

The photoconductivity measurements would c l a r i f y  many d e t a i l s  

The present investigations have been done a t  a constant temperature. 

A very important aspect of phosphor research which has been ignored here 

i s  the dependance of luminescence p h e n e n a  on temperature. Even a t  dry 

ice temperature, e f f e c t s  of in te res t  may appear, and i f  the phosphor could 

be cooled down t o  l iquid hydrogen temperature and i b t i  gradiiafly zsrr& np 

while being excited i n  the vacuum ul t rav io le t ,  a great  deal  of information 

might be revealed about e f f e c t s  such a s  trapping and quenching. 

Although wartinae developments led t o  considerable work on the sti- 

mulation and quenching of phosphors by infrared, few attempts have actual ly  

been made t o  study the infrared emission. I f  t h i s  could be done, one might 

understand better the nature of processes which so f a r  are  simply called 

"radiationless" for  all prac t ica l  purposes. 

Another completely untouched f i e l d  of research i s  the measurements 

of the absolute quantum eff ic iency of organic phosphors excited by the ex- 

treme W photons. The Taechanisms and theory here are completely d i f f e ren t  

from those of c r y s t a l  phosphors. 

droxy 1,l' napthalazine (leumogen) which has constant quantum eff ic iency 

bemeen 4600 ii and 3SS A. (If)) ~ i s ~ i a q m ~ ~ e . r  has usxi  this ieumogen i n  

the f e r m  of a thick s l i ce  t o  measure the absolute quantum eff ic iency of 

sodium salycylate . 

One such organic compound i s  2 ,2 '  dihy- 

(10) 

The discovery of a phosphor which has a very constant absolute quan- 

tum eff ic iency regardless of the wavelength of the impinging radiation, can 

be successfully used fo r  absolute ca l ibra t ion  of unknown u l t r av io l e t  radia- 

t ions.  

solar u l t r av io l e t  physics and likewise i n  the study of the spectrum of 

stars. 

for u l t r av io l e t  i n t ens i ty  masurements. 

ca l ibra t ion  i s  s i m i l a r  t o  that  employed i n  t h i s  work for  finding the ab- 

solute quantum eff ic iency,  8 .  

t: i s  t o  be regarded as a known quantity, and R, the response function a s  

the unknown. After R i s  found, J the in tens i ty  of the W exci t ing ra- 

d i a t ion  can be found from equation (4-8). 

This is important f o r  the present research i n  the f i e ld  of rocket 

A cal ibrated phosphor can replace the less sensit ive thermopile 

The procedure involved i n  such a 

The difference i s  tha t  i n  equation (4-24), 

0' 
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APPEMDXX A.  
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